Plumes of hot magma from the volcanic hotspot that formed Réunion Island in the Indian Ocean rise from an unusually primitive source deep beneath Earth's surface, according to new work in Nature from Carnegie's Bradley Peters, Richard Carlson, and Mary Horan along with James Day of the Scripps Institution of Oceanography.
A fieldwork photo from Réunion Island shows the flank of the Cirque de Cilaos, looking out towards the Indian Ocean [Credit: Bradley Peters] |
The heat from Earth's formation process caused extensive melting of the planet, leading Earth to separate into two layers when the denser iron metal sank inward toward the center, creating the core and leaving the silicate-rich mantle floating above.
Over the subsequent 4.5 billion years of Earth's evolution, deep portions of the mantle would rise upwards, melt, and then separate once again by density, creating Earth's crust and changing the chemical composition of Earth's interior in the process. As crust sinks back into Earth's interior -- a phenomenon that's occurring today along the boundary of the Pacific Ocean -- the slow motion of Earth's mantle works to stir these materials, along with their distinct chemistry, back into the deep Earth.
Sunrise over the summit of Piton des Neiges, the extinct volcano on the Indian Ocean's Réunion Island [Credit: Bradley Peters] |
Using new isotope data, the research team revealed that Réunion lavas originate from regions of the mantle that were isolated from the broader, well-blended mantle. These isolated pockets were formed within the first ten percent of Earth's history.
Isotopes are elements that have the same number of protons, but a different number of neutrons. Sometimes, the number of neutrons present in the nucleus make an isotope unstable; to gain stability, the isotope will release energetic particles in the process of radioactive decay. This process alters its number of protons and neutrons and transforms it into a different element. This new study harnesses this process to provide a fingerprint for the age and history of distinct mantle pockets.
Looking into down into a volcanic crater of Piton de la Fournaise on Réunion Island with dormant volcanic cones in the background [Credit: Bradley Peters] |
The ratio of neodymium-142 to neodymium-144 in Réunion volcanic rocks, together with the results of lab-based mimicry and modeling studies, indicate that despite billions of years of mantle mixing, Réunion plume magma likely originates from a preserved pocket of the mantle that experienced a compositional change caused by large-scale melting of Earth's earliest mantle.
The team's findings could also help explain the origin of dense regions right at the boundary of the core and mantle called large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs), reflecting the unusually slow speed of seismic waves as they travel through these regions of the deep mantle. Such regions may be relics of early melting events.
"The mantle differentiation event preserved in these hotspot plumes can both teach us about early Earth geochemical processes and explain the mysterious seismic signatures created by these dense deep-mantle zones," said lead author Peters.
Source: Carnegie Institution for Science [February 28, 2018]