The tropical rainforests of Central and South America are home to the largest diversity of plants on this planet. Nowhere else are there quite so many different plant species in one place. However, the entire region is increasingly threatened by human activity, which is why researchers are stepping up their efforts to record this astonishing biodiversity and find out how it developed. In a project undertaken by Johannes Gutenberg University Mainz (JGU) in collaboration with Dutch research institutions, the causes of this plant diversity were investigated by studying two closely related groups of trees of the Annonaceae family.
Cremastosperma brevipes, French Guiana [Credit: Paul J. M. Maas] |
Cremastosperma and Mosannona are two genera of the Annonaceae or custard apple family the habitat of which is neotropical rainforests, where they extend from the lowlands up to elevations of 2,000 meters. They are primarily found in the Andes region of South America, but also as far north as Central America.
Mosannona costaricensis, Costa Rica [Credit: Reinaldo Aguilar] |
For this purpose they compiled a time-calibrated phylogenetic tree based on DNA data, using the so-called molecular clock technique which is calibrated using the ages of the available fossils. In total, they analyzed 11 species of the genus Mosannona and 24 species of the genus Cremastosperma.
Formation of the Andes, the Isthmus of Panama, and the drying-out of the Pebas wetland system all promoted diversification
The research has produced a biogeographical scenario that confirms in this context the significance of the geological history of north-western South America during the late Miocene and early Pliocene periods about 5 to 10 million years ago.
Cremastosperma yamayakatense, Peru [Credit: Michael Pirie] |
One way in which diversification can be stimulated is by migration into a new ecosystem while another is adaptation to new conditions. "Natural changes over longer periods provide plants with a chance to adapt," added Pirie. On the other hand, rapid changes, such as those that have occurred in the recent past, do not give plants sufficient time to evolve.
Cremastosperma leiophyllum, Bolivia [Credit: Lars W. Chatrou] |
Taxonomic update to include five new species
Dr. Michael Pirie will be continuing his research work in 2018 with the aid of a grant from the Heisenberg Program of the German Research Foundation (DFG). This will also involve publication of an extensive monograph in which a total of 34 Cremastosperma species will be described, including five new species that Pirie and his colleagues have recently discovered.
The study is published on Royal Society Open Science.
Source: Universitat Mainz [Febraury 26, 2018]