Tropical forests around the world play a key role in the global carbon cycle and harbour more than half of the species worldwide. However, increases in land use during the past decades caused unprecedented losses of tropical forest. Scientists at the Helmholtz Centre for Environmental Research (UFZ) have adapted a method from physics to mathematically describe the fragmentation of tropical forests. In the scientific journal Nature, they explain how this allows to model and understand the fragmentation of forests on a global scale. They found that forest fragmentation in all three continents is close to a critical point beyond which fragment number will strongly increase. This will have severe consequences for biodiversity and carbon storage.
The aerial photo shows forest fragments of the Brazilian Atlantic rainforest in Northeastern Brazil (Mata Atlantica), surrounded by sugar cane plantations [Credit: Mateus Dantas de Paula] |
When searching for explanations for the identical fragmentation patterns, the UFZ modellers found their answer in physics. "The fragment size distribution follows a power law with almost identical exponents on all three continents," says biophysicist Andreas Huth. Such power laws are known from other natural phenomena such as forest fires, landslides and earthquakes. The breakthrough of their study is the ability to derive the observed power laws from percolation theory. "This theory states that in a certain phase of deforestation the forest landscape exhibits fractal, self-similar structures, i.e. structures that can be found again and again on different levels," explains Huth. "In physics, this is also referred to as the critical point or phase transition, which for example also occurs during the transition of water from a liquid to gaseous state," added co-author Dr. Thorsten Wiegand from UFZ. A particularly fascinating aspect of the percolation theory is that this universal size distribution is, at the critical point, independent of the small-scale mechanisms that led to fragmentation. This explains why all three continents show similar large-scale fragmentation patterns.
The UFZ team compared the remote sensing data of the three topical regions with several predictions of percolation theory. In support of their hypothesis they found agreement not only for the fragment size distribution, but also for two other important indicators - the fractal dimension and the length distribution of fragment edges. "This physical theory allows us to describe deforestation processes in the tropics," concludes Dr. Rico Fischer, co-author of the study. And that's not all: this approach can also be used to predict how fragmentation of tropical forests will advance over the next decades. "Particularly near the critical point, dramatic effects are to be expected even in the case of relatively minor deforestation," adds Taubert.
Using scenarios that assume different clearing and reforestation rates, the scientists modelled how many forest fragments can be expected by 2050. For example, if deforestation continues in the Central and South American tropics at the current rate, the number of fragments will increase 33-fold and their mean size will decrease from 17 ha to 0.25 ha. The fragmentation trend can only be stopped by slowing down deforestation and reforesting more areas than deforesting, which currently is a rather unlikely option. Future satellite missions, such as Tandem-L, are of great importance for the timely and reliable detection of these trends.
Advanced fragmentation of tropical forests will have severe consequences for biodiversity and carbon storage. On the one hand, biodiversity suffers because numerous rare animal species depend on large forest patches. For example, the jaguar needs around 10,000 hectares of contiguous forest to survive. On the other hand, the increasing fragmentation of forests also has a negative impact on climate. A UFZ team of scientists led by Andreas Huth described in Nature Communications in spring of last year that fragmentation of once connected tropical forest areas could increase carbon emissions worldwide by another third, as many trees die and less carbon dioxide is stored in the edge of forest fragments.
Source: Helmholtz-Centre for Environmental Research - UfZ [February 14, 2018]