This video is an entry for the Breakthrough Junior Challenge 2015 which gives a unique visualization of Special Relativity using hyperbolic geometry. I liked the idea of making a video on Special Relativity because I had already explored the use of M.C. Escher’s woodcut Circle Limit III as a teaching tool for explaining the hyperbolic geometry of Minkowski spacetime. The main intuition is that the principle of Relativity asserts that the manifold of frames of reference is homogeneous and isotropic, and there are exactly three geometries associated with this: Sphere (which exists as rotations through space), Plane (which represents Galilean Relativity) and the Hyperbolic Plane (which exists as rotations through spacetime). So watch and Learn:
Here is Why You Can Never Reach the Speed of Light
This video is an entry for the Breakthrough Junior Challenge 2015 which gives a unique visualization of Special Relativity using hyperbolic geometry. I liked the idea of making a video on Special Relativity because I had already explored the use of M.C. Escher’s woodcut Circle Limit III as a teaching tool for explaining the hyperbolic geometry of Minkowski spacetime. The main intuition is that the principle of Relativity asserts that the manifold of frames of reference is homogeneous and isotropic, and there are exactly three geometries associated with this: Sphere (which exists as rotations through space), Plane (which represents Galilean Relativity) and the Hyperbolic Plane (which exists as rotations through spacetime). So watch and Learn: